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Learning objectives
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Gain a conceptual foundation of neural
networks and deep learning

Have a basic understanding of inference with
neural networks

Learn about some examples of neural
networks used in the study of biology
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Final exam
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Week 15

Scheduled for 1:30-3:20pm, but will be
available all day Tuesday
Similar to midterm but focusing on second

half of the course
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Course laptops
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Get these back to me once you’re done with
them

I’1l be in the classroom on Thursday (Dec. 12)
at our normal meeting time to receive laptops.
Otherwise let me know when you can get it to
me

Will receive an incomplete grade if not
returned
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Outline

1. Overview of neural networks
2. CNNs

3. AlphaFold

4.

Programming Project 6
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Machine learning

Machine learning comprises a variety of computaitnal methods
including many that are popular in bioinformatics, as well as
computational biology more broadly:

> Random Forest
> Neural networks
> Support-vector machines
> LASSO regression
Brian Kissmer USU Department of Biology
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Applications of machine learning - image recognition

Dog?
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Applications of machine learning - prediction of gene interactions
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Applications of machine learning - prediction of phenotype from genotype
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Generalized machine learning workflow

Train: lterate till you find the best model
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Artificial neural networks

2O,

y

Dendrit.es
(Accept i/p) information
¥ transfer

|
Q

i 5
Axons (Process i/p) ,

Q. %
(S e

Nerve impulse

Machine learning models (loosely) inspired by biological neural

networks
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I BBHHHHHHHHEGEGERRRRSBS
Artificial neural networks

Models are composed of units that combine multiple inputs to
produce outputs
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Artificial neural networks

5 @

Simple NN (perceptron) model, classification () is determined by

whether the weighted sum of input elements exceeds a threshold
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I BBHHHHHHHHEGEGERRRRSBS
Artificial neural networks

Neural networks are trained, increasing or decreasing the weights
(w) iteratively
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Multilayer neural networks

Multilayer networks consist of at least 3 layers:
the input layer, hidden layer (z), and output

layer
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Activation functions for multilayer neural networks

(@) | (b) (©)

05 4

+05

&
J [

05

5 0 5
—— 10 —— 5

1

Tanh Sigmoid RelLU

Common non-linear activation functions (green) and
their derivatives (blue); ReLU = rectified linear
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Learning involves tuning weights
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Gradient descent algorithms adjust weights (#) in the multivariate direction of

deecreasing error (loss) (J(W))
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[terative training improves models until it doesn’t

Loss L

Underfitting Overfitting
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Validation

Training

Time (epochs)

Too much training can focus the network on the training data and lead to poor

performance with out-of-bag validation data (epoch = passes through the training data
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Deep neural networks

Deep neural networks learn with many hidden layers
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Deep versus shallow neural networks

Accuracy 11 layers 2 networks with almost
¥~ the same number of
parameters, but
different depths and
different accuracies

.\.A/_‘

3 layers

Number of parameters

Even with a single layer, neural networks can approximate any function. However, deep
networks do well with fewer parameters than shallow networks
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Neural network example: Iris classification example

iris setosa iris versicolor

petal sepal petal sepal petal sepal
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Iris classification neural network

library (neuralnet)

data(iris)

## divide into test (20) and training (80)
ntrain <- floor(0.80 * nrow(iris))

trainIndices <- sample(c(l:nrow(iris)), ntrain,
replace=FALSE)

train data <- iris[trainIndices, ]

test data <- 1ris[-trainIndices, ]
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Iris classification neural network
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model <- neuralnet (
Species~Sepal.Length+Sepal.Width+
Petal.Length+Petal.Width,
data=train data,

hidden=c (4, 3),

linear.output = FALSE)

pred <- predict (model, test data)
preds <- apply(pred,l,which.max)

Unit 4: Bioinformatics and machine learning

unique (as.character (test data$Species)) [preds]
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Iris classification neural network

Sepal.Length

Sepal.Width

Petal.Length Z

¥ \Vvirginica

»
»

Petal. Width , ~

Error: 0.004966 Steps: 3416
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Iris classification neural network: success

setosa versicolor virginica
setosa 11 0 0
versicolor 0 3 0
virginica 0 0 11
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Convolutional neural networks
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Visualization of a 2D convolution of image (I) with a filter (K)
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Convolutions applied to an image

Original image Vertical edge detection Horizontal edge detection

The first convolution emphasizes vertical edges, the second emphasizes horizontal edges

Brian Kissmer USU Department of Biology
Week 15



Neural networks, CNNs, and AlphaFold Unit 4: Bioinformatics and machine learning

Convolutions plus non-linear activation applied to an image

Rectified linear unit (ReLU) Input feature map Rectified feature map

g(z) = max(0, z)

Application of the ReLU activation function, note the preservation of positive values
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Many filters can be learned and combined
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1st hidden layer
2nd filter

Each feature can detect different features of an image, creating mutiple feature maps
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Pooling layers reduce the dimensions of feature maps
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Input layer
(image) 1st hidden layer

take the maximum (or average) value of elements in a filter with stride > 1
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Pooling layers reduce the dimensions of feature maps

Max Pool

—

Filter - (2 x 2)
Stride - (2, 2)

take the maximum (or average) value of elements in a filter with stride > 1
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Basic CNN architecture

Input image Convolution Pooling Convolution Pooling O//
+ -
Non-linearity Non-linearity

Flatten Fully

k J connected
' s

Feature learning Classification

Combines convolutions for feature learning and classic multilayer networks for
classification and regression
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CNNs in R
> You can fit CNNs in R using the keras package
> Other languages (e.g. Python) interface with keras more easily and with other
packages for CNNs
> Process is somewhat involved, but not too crazy
> Here’s an example for you to try if interested:
o https://www.r-bloggers.com/2018/07/convolutional-neural-networks-in-r/
Brian Kissmer USU Department of Biology
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CNN s 1n biology- abnormality detection/disease classification/diagnosis

C3: Features Maps  S4: Features Maps
16 @10 x 10 16@5 X5 C5: 120 F6: 84

C1: Features Maps
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Convolutional Pooling Convolutional Pooling Convolutional Fully
Layer Layer Layer Layer Layer Connected
CNN architecture for medical image classification
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CNNs in biology- identify/measure eyespots on butterfly wings

lamileo o
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Examples of butterfly wing-pattern spots
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CNNs in biology- identify/measure eyespots on butterfly wings

Eyespot Detection

Resizing to original

Eyespot Measurement Extraction

O o U £y

detection

Uses 2 networks: one for detection and one for measurement

Brian Kissmer USU Department of Biology
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CNN s 1n biology

There are many other examples, but we could spend an entire
course talking about this, so...
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Protein folding problem

One of the biggest challenges in biology’s recent history has
been to predict the 3-dimensional structure of a protein from
its amino acid sequence
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The protein folding problem
> Primary structure = amino
acids held together by peptide

bonds, can be determined via

> Secondary structure = local

Brian Kissmer
Week 15

DNA sequencing

motives. a-helixes and
[-sheets held together by
hydrogen nonds

Primary

P

Secondary

Tertiary
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Quarternary
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The protein folding problem

CNNs, and AlphaFold

> Tertiary structure =

between protein side chains

>

structure of proteins composed

Brian Kissmer
Week 15

3-dimensional shape of the
protein, determined by
interactions and bonds

Quaternary structure =

of multiple polypeptides or
protein chains

Primary

P

Secondary

Tertiary

Unit 4: Bioinformatics and machine learning

Quarternary
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Protein folding problem

> Experimental determination of protein structure 1s
expensive and time consuming
> Protein structure prediction 1s a major aim 1n
computational biology
> Annual competition CASP (Critical Assessment of
Techniques) since 1994

Brian Kissmer USU Department of Biology
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AlphaFold “solved” the protein folding problem

> DeepMind’s (from Google) AlphaFold, a powerful neural
network, was introduced in the 2018 competition
> AlphaFold2 (with improvements) dominated the 2022
competition with near experimental accuracy

Brian Kissmer USU Department of Biology
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Median Ca r.m.s.d.. (A)

Unit 4: Bioinformatics and machine learning

Performance relative to top competitors at CASP

G427

AlphaFold
G009
G473
G129
G403
G032
G420
G480
G498
G488
G368
G324
G362
G253
G216
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N terminus

AlphaFold Experiment

AlphaFold Experiment
r.m.s.d.q, = 0.8A; TM-score = 0.93

r.m.s.d. = 0.59 A within 8A of Zn

AlphaFold Experiment
r.m.s.d.q = 2.2A; TM-score = 0.96
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Major steps of AlphaFold

Alphafold consists of  major steps:
> Multiple sequence alignment (MSA) and pairwise distance matrix
between residues for known homologs
> Evoformer neural network develops and refines structural
representation of protein in 3D space, treating it as a graph problem

Brian Kissmer USU Department of Biology
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Architecture of AlphaFold network
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eSS
AlphaFold approach

= o I

Evoformer NN treats structure prediction as a graph problem (note step c)




Neural networks, CNNs, and AlphaFold Unit 4: Bioinformatics and machine learning

Alphafold outputs predictions in hours to days

https://github.com/google-deepmind/alphafold/blob/

main/imgs/caspl4 predictions.gif
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Programming Projcet 6

Programming project 6 involves predicting 3D protein
structure with AlphaFold
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